SYLLABUS

Master of Technology in Biotechnology

Department of Biotechnology

Haldia Institute of Technology (Autonomous)
Program Outcomes (PO)

1. **Engineering knowledge:** Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.

2. **Problem analysis:** Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.

3. **Design/development of solutions:** Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.

4. **Conduct investigations of complex problems:** Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.

5. **Modern tool usage:** Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.

6. **The engineer and society:** Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.

7. **Environment and sustainability:** Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.

8. **Ethics:** Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.

9. **Individual and team work:** Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.

10. **Communication:** Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.

11. **Project management and finance:** Demonstrate knowledge and understanding of the engineering and management principles and apply these to one’s own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.

12. **Life-long learning:** Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.
Course Curriculum for M.Tech (Biotechnology)

SEMESTER-I

<table>
<thead>
<tr>
<th>Sl No</th>
<th>Category</th>
<th>Subject Code</th>
<th>Subject Name</th>
<th>Total Number of contact hours</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Theory</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Program Core I</td>
<td>PC-MBT101</td>
<td>Genetic Engineering</td>
<td>3 0 0 3</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Program Core II</td>
<td>PC-MBT102</td>
<td>Plant Genetic Engineering</td>
<td>3 0 0 3</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Program Elective-I</td>
<td>PE-MBT103 A/B</td>
<td>Program Elective-I</td>
<td>3 0 0 3</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Program Elective-II</td>
<td>PE-MBT104 A/B</td>
<td>Program Elective-II</td>
<td>3 0 0 3</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Mandatory Learning Course</td>
<td>MLC-MBT101</td>
<td>Research Methodology and IPR</td>
<td>2 0 0 2</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Audit Course</td>
<td>AC-MBT101A/B/C/D/E/F/G/H</td>
<td>Audit Course 1</td>
<td>2 0 0 0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Total Theory</td>
<td></td>
<td></td>
<td>16 0 0 14</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Practical</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Laboratory I</td>
<td>0 0 4 2</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
<td>Laboratory II</td>
<td>0 0 4 2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Total Practical</td>
<td></td>
<td></td>
<td>0 0 8 4</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Total of Semester-I</td>
<td>16 0 8 18</td>
<td></td>
</tr>
</tbody>
</table>

SEMESTER-II

<table>
<thead>
<tr>
<th>Sl No</th>
<th>Category</th>
<th>Subject Code</th>
<th>Subject Name</th>
<th>Total Number of contact hours</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Theory</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Program Core III</td>
<td>PC-MBT201</td>
<td>Bioinformatics</td>
<td>3 0 0 3</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Program Core IV</td>
<td>PC-MBT202</td>
<td>Animal Cell Culture</td>
<td>3 0 0 3</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Program Elective-III</td>
<td>PE-MBT203 A/B</td>
<td>Program Elective-III</td>
<td>3 0 0 3</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Program Elective-IV</td>
<td>PE-MBT204 A/B</td>
<td>Program Elective-IV</td>
<td>3 0 0 3</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Audit Course</td>
<td>AC-MBT201A/B/C/D/E/F/G/H</td>
<td>Audit Course 2</td>
<td>2 0 0 0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Total Theory</td>
<td></td>
<td></td>
<td>14 0 0 12</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Practical</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Laboratory III</td>
<td>0 0 4 2</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
<td>Laboratory IV</td>
<td>0 0 2 1</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
<td>Laboratory IV</td>
<td>0 0 2 1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Total Practical</td>
<td></td>
<td></td>
<td>0 0 8 4</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Total of Semester-II</td>
<td>14 0 12 18</td>
<td></td>
</tr>
</tbody>
</table>

SEMESTER-III

<table>
<thead>
<tr>
<th>Sl No</th>
<th>Category</th>
<th>Subject Code</th>
<th>Subject Name</th>
<th>Total Number of contact hours</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Major Project</td>
<td>SE-MBT381</td>
<td>Dissertation-I (Progress)</td>
<td>0 0 20 10</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Total of Semester-III</td>
<td></td>
<td></td>
<td>6 0 20 16</td>
<td></td>
</tr>
</tbody>
</table>

SEMESTER-IV

<table>
<thead>
<tr>
<th>Sl No</th>
<th>Category</th>
<th>Subject Code</th>
<th>Subject Name</th>
<th>Total Number of contact hours</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Major Project</td>
<td>SE-MBT481</td>
<td>Dissertation-II (Completion)</td>
<td>0 0 32 16</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Total of Semester-IV</td>
<td></td>
<td></td>
<td>0 0 32 16</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Total Credits for the Programme</td>
<td>68</td>
<td></td>
</tr>
</tbody>
</table>

Students going to Industry full time for doing their Project & Thesis work (Dissertation) may opt for completion of these courses through Massive Open Online Courses (MOOCs)
<table>
<thead>
<tr>
<th>Code</th>
<th>Field</th>
</tr>
</thead>
<tbody>
<tr>
<td>PC</td>
<td>Program Core Courses</td>
</tr>
<tr>
<td>PE</td>
<td>Program Electives Courses</td>
</tr>
<tr>
<td>MLC</td>
<td>Mandatory Learning Courses</td>
</tr>
<tr>
<td>AC</td>
<td>Audit courses</td>
</tr>
<tr>
<td>SE</td>
<td>Sessional Courses</td>
</tr>
<tr>
<td>OE</td>
<td>Open Elective Courses</td>
</tr>
</tbody>
</table>
List of Program Electives

- **Program Elective -I**
 1. Immunotechnology (PE-MBT103A)
 2. Cell Biology (PE-MBT103B)
- **Program Elective -II**
 1. Bioprocess Engineering (PE-MBT104A)
 2. Instrumentation in Biotechnology (PE-MBT104B)
- **Program Elective -III**
 1. Downstream Processing (PE-MBT203A)
 2. Bioreactor Design, Development and Scaleup (PE-MBT203B)
- **Program Elective -IV**
 1. Genomics and Proteomics (PE-MBT204A)
 2. Pharmaceutical Biotechnology (PE-MBT204B)
- **Program Elective -V**
 1. Biostatistics and Design of Experiments (PE-MBT301A)
 2. Modelling and Simulation in Bioprocess (PE-MBT301B)
 3. Problem solving through Programming in C (PE-MBT301C)
 4. Big Data Analytics (PE-MBT301D)
 5. Nanobiotechnology (PE-MBT301E)
 6. Environmental Biotechnology (PE-MBT301F)
 7. Food Biotechnology (PE-MBT301G)

List of Open Electives

1. Business Analytics (OE-MBT301A)
2. Operations Research (OE-MBT301B)
3. Cost Management of Engineering Projects(OE-MBT301C)
4. Industrial Safety (OE-MBT301D)
5. Composite Materials(OE-MBT301E)
6. Waste to Energy (OE-MBT301F)

Audit Course 1 & 2

1. English for Research Paper Writing (AC-MBT101A/AC-MBT201A)
2. Pedagogy Studies (AC-MBT101B/AC-MBT201B)
3. Constitution of India (AC-MBT101C/AC-MBT201C)
4. Disaster Management (AC-MBT101D/AC-MBT201D)
5. Value Education (AC-MBT101E/AC-MBT201E)
6. Stress Management by Yoga (AC-MBT101F/AC-MBT201F)
7. Personality Development through Life Enlightenment Skills (AC-MBT101G/AC-MBT201G)
8. Sanskrit for Technical Knowledge (AC-MBT101H/AC-MBT201H)
COURSE OBJECTIVE:

The objectives of the course are:
1. This course offers students to learn the tools and techniques used in genetic engineering and recombinant DNA technology.
2. To make students learn the application of recombinant DNA technology in the field of biomedical, agriculture, and environment.

COURSE OUTCOME:

After successful completion of this course, the student will be able to:

1. Understand, define and explain the tools in recombinant DNA technology.
2. Understand techniques in recombinant DNA technology.
3. Identify, select and implement the PCR and its types in molecular biology and recombinant DNA technology.
4. Understand and analyze knowledge of mutagenesis.
5. Apply knowledge of genetic engineering in current applications of biotechnology.
6. Comprehend and analyze the impact of Human Genome Project in genetic engineering program.

COURSE CONTENT:

COURSE CONTENT:

Module I: 12L Basics tools of Genetic Engineering
Restriction Enzymes, DNA ligase, Klenow enzyme, T4 DNA polymerase, Polynucleotide kinase, Alkaline phosphatase, Linkers, Adaptors, Homopolymeric tailing
Labeling of DNA: Nick translation, Random priming, Radioactive and non-radioactive probes
Hybridization techniques: Northern, Southern, Eastern; Southwestern and Far-western; Fluorescence in situ hybridization, Chromatin Immunoprecipitation, DNA-Protein Interactions, Sequencing methods (Nucleic acid and Proteomics)

Module II: 14L Cloning Vectors and Cloning Methodologies
Plasmids, Bacteriophages, Phagemids, Cosmids, Artificial chromosome vectors (YACs, BACs), Animal Virus derived vectors-SV-40, vaccinia/bacculo and retroviral vectors, Expression vectors, Protein purification Construction of siRNA vectors, Insertion of Foreign DNA into Host Cells, Transformation, Construction of libraries, cDNA and genomic libraries; Expression cloning, Protein-protein interactive cloning

Module III: 12L PCR and Its Applications
Primer design, Fidelity of thermostable enzymes, DNA polymerases, Types of PCR –multiplex, nested, reverse transcriptase, real time PCR, touchdown PCR, hot start PCR, colony PCR, PCR in gene recombination, Site specific mutagenesis, PCR in molecular diagnostics, Viral and bacterial detection, Mutation detection: SSCP, DGGE, RFLP, Oligo Ligation Assay (OLA), MCC (Mismatch Chemical Cleavage, ASA (Allele-Specific
Amplification, PTT (Protein Truncation Test)

Module IV: 10L Applications of Genetic Engineering
Introduction of DNA into mammalian cells, Transfection techniques, Gene silencing techniques, Introduction to siRNA, siRNA technology, Micro RNA, Gene knockouts and Gene Therapy, Creation of knockout mice, Disease model, Somatic and germ-line therapy- in vivo and ex-vivo, Suicide gene therapy, Gene replacement, Gene targeting, Differential gene expression and protein array, PCR in molecular diagnostics, Applications in medicine – Gene therapy; recombinant vaccines –humanized antibodies and their applications genetically modified food – bioremediation with recombinant micro organisms

References
3. J. D. Watson et al., Recombinat DNA, W.H. Freeman and Company
6. Technical Literature from Stratagene, Promega, Novagen, New England Biolab etc.

<table>
<thead>
<tr>
<th>Course Code</th>
<th>PC-MBT102</th>
</tr>
</thead>
<tbody>
<tr>
<td>Category</td>
<td>Program Core II</td>
</tr>
<tr>
<td>Course Title</td>
<td>Plant Genetic Engineering</td>
</tr>
<tr>
<td>Scheme and Credits</td>
<td>L</td>
</tr>
<tr>
<td></td>
<td>3</td>
</tr>
</tbody>
</table>

COURSE OBJECTIVE:
The objectives of the course are:

1. To make the students aware of the principles, practices and application of the plant tissue culture, plant genomics, genetic transformation and molecular breeding of plants being confident at the end of the course in all above mentioned areas.
2. To realize the importance of plant Genetic Engineering with its applicative value in pharmaceutical and food industry, agriculture and ecology.

COURSE OUTCOMES:
After completion of course, students would be able to:

1. **Understand** the use of different plant tissue culture (PTC) techniques for PTC Industries as well as research.
2. **Understand** the structure and organization of genes & complexity of plant genome and able to **identify** the tools for gene identification and its functional analysis.
3. **Understand, identify and illustrate** the different modern tools & techniques of Plant Genetic Engineering for crop improvement and sustainable agriculture.
4. **Evaluate** the impact of Plant Genetic Engineering in pharmaceutical and food industry, agriculture and
ecology.
5. **Understand** the Molecular Mapping & Marker Assisted Selection techniques and also able to **judge** the intellectual property, environmental, societal issues specific to transgenic crops.
6. **Management** of research and commercial laboratory in the field of Plant Genetic Engineering.

COURSE CONTENT:

Module I: [8 Lectures]

Plant Tissue Culture: An overview
Historical perspective; Totipotency; Organogenesis; Somatic embryogenesis; Artificial seed production; Micropropagation; Somaclonal variation; Androgenesis and its applications in genetics and plant breeding; Germplasm conservation and cryopreservation.

Module II: [10 Lectures]

Plant Genomics

Identification of candidate genes using: genetic information (positional cloning); biochemical and expression analysis (microarray analysis, proteomics, metabolomics); **Characterization and functional analysis of candidate genes using:** transformation, mutant populations, knockout systems; Heterologous expression systems; Protein analysis.

Module III: [10 Lectures]

The Gene transfer Techniques for the production of Transgenic
Overview of different gene transfer methods
- **Indirect Gene transfer Methods:** structural features of Ti plasmid, mechanism of gene transfer to plants Integration of T-DNA into plant genome, Molecular events in Agrobacterium mediated gene transfer.
- **Direct gene transfer methods:** Particle bombardment mediated transformation, Mechanism, Particle gun design, parameter for effective transformation; silicon carbide fiber mediated transformation and alternative methods.
- Reporter genes, Selectable and scorable markers, Binary and Co-integrative vectors, Removal of marker genes, Applications and limitations of Agrobacterium gene transfer.
- Plastid engineering: Introduction, importance, scope and technique.

Module IV: [10 Lectures]

Application of Genetic Engineering: Some Case studies
- Genetic Engineering for Herbicide resistance
- Genetic Engineering for Biotic and Abiotic Stress Resistance/Tolerance
- Genetic Engineering for Vitamins and other value addition compounds
- Genetic Engineering for Production of pharmaceutically important compounds
- Genetic Engineering for Bioenergy generation
- Terminator technology

Module V: [10 Lectures]

Molecular Mapping & Marker Assisted Selection (MAS)
Quantitative and qualitative traits; MAS for genes of agronomic importance, e.g. insect resistance, grain quality and grain yield; Molecular polymorphism, RFLP, RAPD, STS, AFLP, SNP markers; Construction of genetic and physical map; Gene mapping and cloning; QTL mapping and cloning.
Reference books:

<table>
<thead>
<tr>
<th>Course Code</th>
<th>PE-MBT103A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Category</td>
<td>Program Elective 1</td>
</tr>
<tr>
<td>Course Title</td>
<td>Immunotechnology</td>
</tr>
<tr>
<td>Scheme and Credits</td>
<td>L T P Cr. Points Lec. Hrs.</td>
</tr>
<tr>
<td></td>
<td>3 0 0 3 40</td>
</tr>
</tbody>
</table>

Semester: I

COURSE OBJECTIVE:

The objectives of the course are:

1. Account for the structure and function of the immune system both at the molecular and cellular level.
2. Account for polyclonal, monoclonal and humanized antibodies and production of these.
3. Describe immunization/vaccination, immunological disease and immunotherapy.
4. Plan, carry out and present achieved results of immunological serum analyses by means of different immunotechniques.
5. Discuss immunological techniques and their applications in biotechnical industry.

COURSE OUTCOMES:

After completion of course, students would be able to:

1. Conceptualize and infer how the innate and adaptive immune responses coordinate to fight invading pathogens.
2. Apply the knowledge of basic Immunology to identify problems and formulate solutions for the protection of human health.
3. Understand the theories of different immunological techniques and apply them efficiently in solving problems related to scientific research, health care, forensic sciences, drug industries for formulation of newer medicines etc.
4. Explore strategies to improve existing vaccines and how to approach these.
5. Design immunological techniques and apply them in biotechnical industry.
6. Interpret and analyze results of scientific experiments involving in vivo models used in different researches including tumor and cancer biology, autoimmune diseases, immunodeficiency diseases etc.

COURSE CONTENT:

Module 1: 10L
Introduction to Immunotechnology: Kinetics of immune response, memory; Techniques for analysis of Immune response. Genetic bases of immune response: Heterogeneity; Principles of Immunization; Animal models and
transgenic animals and their use in immunology, gene knock outs.

Module II: 10L

Molecular basis of Immunology: Immunochemistry of Antigens - immunogenecity, Antigenecity, haptens, Toxins-Toxiods, Hapten-carrier system; Role and properties of adjuvants, Immune modulators; Antibody Related Techniques-Hybridoma Rabbit, human; Antigen – Antibody interaction, affinity, cross reactivity, specificity, epitope mapping; Immuno assays RIA, ELISA, Western blotting, ELISPOT assay, immunofluorescence, Surface plasmon resonance, flow cytometry and immunoelectron microscopy; Cell imaging Techniques- In vitro and In vivo.

Module III: 10L

New Generation Antibodies; Multigene organization of immunoglobulin genes, Ab diversity; Chimeric antibodies, Antibody engineering; Phage display libraries; Antibodies as *in vitro* and *in vivo* probes. Large scale manufacture of antibodies; Manufacturing of immuno diagnostics.

Module IV: 10L

Vaccine technology: Rationale vaccine design based on clinical requirements, Active immunization, live, killed, attenuated, Sub unit vaccines; Recombinant DNA and protein based vaccines, plant-based vaccines and reverse vaccinology; Peptide vaccines, conjugate vaccines; Passive Immunization; Antibody, Transfusion of immuno-competent cells, Stem cell therapy;

Reference books:

2. Immunology, Kuby, J. 3rd Ed. (1997), Freeman, W.H, Oxford, UK

<table>
<thead>
<tr>
<th>Course Code</th>
<th>PE-MBT103B</th>
</tr>
</thead>
<tbody>
<tr>
<td>Category</td>
<td>Program Elective I</td>
</tr>
<tr>
<td>Course Title</td>
<td>Cell Biology</td>
</tr>
<tr>
<td>Scheme and Credits</td>
<td></td>
</tr>
<tr>
<td>Listle Hrs.</td>
<td>Semester: I</td>
</tr>
<tr>
<td>L</td>
<td>T</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
</tr>
</tbody>
</table>

COURSE OBJECTIVE:

The objectives of the course are:

This course gives a detailed overview on Cell Biology including all cellular components with their basic structure and function along with bioenergetics, ATP generation, membrane transport signal transduction pathways, its implication in cancer, cell cycle and apoptosis. With this knowledge, students would build up a concrete base on cell biology to work in research field and in various project works.

COURSE OUTCOME:

After completion of the course, Students can be able to

1. **Learn** and **understand** the basic chromatin structure, membrane components, cellular transport in details.
2. **Remember, define, and repeat** their concept with requisite background knowledge in the field of bioenergetics, ATP generation, signal transduction pathways and their implication in cancer.
3. **Conceptualize** general principles of cell communication, molecular motors, cytoskeleton components **understanding** their roles in the biological system.

4. **Learn** the details of various signal transduction processes in correlation with the biological impact like onset of cancer.

5. **Employ** their creative potential in **investigating and developing** new ideas in Cell Biology based projects.

COURSE CONTENT:

Module I: (8L)

Cell, DNA and chromosome

Cell Chemistry and Biosynthesis, chemical components of cells, catalysis and use of energy by cells, how cells obtain energy from food, The structure and function of DNA, chromosomal DNA and its packaging in the chromatin fibre, the global structure of chromosomes, microscopy for visualization of cells

Module II: (12L)

Membrane Structure, Transport & Electrical Properties of membranes, protein sorting

Lipid bilayer, membrane proteins Principles of membrane transport, carrier proteins and active membrane transport, mitochondria, electron transport chains and their proton pumps, Chloroplasts and photosynthesis, the genetic systems of mitochondria and plastids, the evolution of electron transport chains, protein targeting, Molecular mechanisms of membrane transport

Module III: (16L)

Cell Communication, Cytoskeleton

General principles of cell communication, Cell junction, cell-cell adhesion, the extracellular matrix of animals, integrins, signaling through G-protein linked cell surface receptors, signaling through enzyme linked cell surface receptors, Cytoskeleton structure and its role as a target for anticancer drugs.

Module IV: (12L)

The Cell Cycle and programmed cell death

An overview of the cell cycle, components of the cell cycle control system, apoptosis (Intrinsic and extrinsic pathway), fluorescence-activated cell sorting.

References:

1. H.R. Lodish et al.: Molecular Cell Biology
2. Bruce Alberts et al and J. D. Watson: Molecular Biology of the Cell

<table>
<thead>
<tr>
<th>Course Code</th>
<th>PE-MBT104A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Category</td>
<td>Program Elective II</td>
</tr>
<tr>
<td>Course Title</td>
<td>Bioprocess Engineering</td>
</tr>
<tr>
<td>Scheme and Credits</td>
<td>L</td>
</tr>
<tr>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Pre-requisites (if any)</td>
<td>-</td>
</tr>
</tbody>
</table>
COURSE OBJECTIVE:

The objective of the course is:

To develop skill of the students in the area of Bioprocess technology. This will be very helpful in understanding Bioreactor design and its application, simulation of different models etc.

COURSE OUTCOME:

After completion of the course students will be able to:

1. **Understand, define** and **recall** the basic Bioprocess engineering concepts of growth and product formation.
2. **Understand** the kinetics of different fermentation process.
3. **Understand** the Instrumentation and Control of different types of Bioreactors.
4. **Analyse** cell culture kinetics.
5. **Analyse** the mass and heat transfer in Biochemical process.

COURSE CONTENT:

Module I: [14 lectures]

Module II: [10 lectures]

Design of Immobilized biocatalytic reactors, membrane reactors, Plant cell bioreactors, Instrumentation and Control of Bioreactors.

Module III: [14 lectures]

Large scale mammalian cell culture – non perfused attachment system and perfusion for cell cultivation, suspension culture, microcarrier culture system, microencapsulation, fluidized bed system, aeration, mixing & hydrodynamics in bioreactors, cell culture kinetics, large scale stirred tank and air lift reactors for cultivation of animal cell

Module IV: [10 lectures]

Mass transfer studies in stirred tank reactor, Heat transfer for biochemical processes. RTD studies, Scale up

References:

2. Chemical Reaction Engineering, Octave Levenspiel, John Wiley & Sons
COURSE OBJECTIVES:

The objectives of the course are:

1. To learn about how to develop and formulate methods to meet the need of pure products like proteins, enzymes etc related to the biopharmaceuticals clinical research.
2. To create general understanding of pH measurement, microscopy, luminescence spectroscopy, electrophoresis, sequencing methods, mass spectroscopy and protein sequencing
3. Overall, at the end of the course, the students will have scientific understanding of the basic concepts in instrumentation used in Biotechnology.

COURSE OUTCOME (CO):

After successful completion of this course, the student will be able to:

1. Use various techniques for solving various industrial and research problems.
2. More confident to use the knowledge in pursuing bioprocess knowledge in industrial biotechnological application.
3. Demonstrate a broad understanding of life science analytical sophisticated technologies and to gain the ability to plan and execute experiments, and analyze and interpret outcomes.
4. Prepare analyze, interpret, maintain and communicate scientific data effectively.
5. Develop and present a strategic plan for ongoing personal and professional development to enhance work performance.
6. Understand the basic principles of engineering knowledge to solve a critical problem.

COURSE CONTENT:

Module I: [10 Lectures]
Some Chemical and Biochemical Methods for Recovery of Bulk Products
Aqueous solutions, Acids, Bases, pH Measurements by pH meter, Buffers systems, Buffer preparation, Cell and tissue disruption, Precipitation procedures for proteins and nucleic acids, Filtration and Membrane based purification: Microfiltration, Ultrafiltration, Reverse osmosis (UF and RO); Dialysis; Electrodialysis; Diafiltration; Pervaporation, and lyophilisation; Centrifugation: Basic principle and application; Differential, density and Ultracentrifugation.

Module II: [8 Lectures]
Low Pressure and High Pressure Liquid chromatography (HPLC)
Basic principles of LPC and HPLC, Instrumentation, quantification, Macromolecular separation by gel filtration, hydrophobic, reverse phase, ion exchange chromatography.
Module III: [8 Lectures]

Spectroscopy in Biotechnology

Module IV: [8 Lectures]

Microscopic Techniques in Biotechnology
Light microscopy, phase contrast, dark field, and fluorescence microscopy, Application of confocal microscopy; Basic principles, instrumentation and application of Electron microscopy: Transmission and Scanning electron Microscopy.

Module V: [6 Lectures]

Proteomics for Biotechnology
Electrophoresis: Gel electrophoresis (1D and 2D); Basic principles, instrumentation, application in biotechnology; Mass spectrometry in Protein and Proteomics; Basic principles of MALDI-Mass spectrometry; MALD – TOF Analyzer.

References:

Web Reference:

1. NPTEL: http://nptel.ac.in/courses/102106048/
2. NPTEL: http://nptel.ac.in/courses/102103044/
3. NPTEL: http://nptel.ac.in/courses/102107028/
4. NPTEL: https://onlinecourses.nptel.ac.in/noc18_bt30/preview
5. ePgPathshala: http://epgp.inflibnet.ac.in/view_f.php?category=1204
6. ePgPathshala: http://epgp.inflibnet.ac.in/view_f.php?category=1354
COURSE OBJECTIVE:

The objectives of the course are:
1. To learn the basic research terminology.
2. To study the various research designs and techniques.
3. To identify various sources of information for literature review and data analysis.
4. To study the content of research report and thesis.
5. To emphasize on IPR issues and need for knowledge in patents in biotechnology.

COURSE OUTCOME (CO):

After successful completion of this course, the student will be able to:

1. Understand the basic concepts of research and its methodologies.
2. Select and define appropriate research problem and parameters.
3. Understand, identify and develop various research designs and techniques.
4. Examine and analyze quantitative, qualitative methods for data collection, observation and result.
5. Understand, implement the presentation tools and formulate a research report, thesis.
6. Understand the awareness of the patent and copyright for their innovative works.

COURSE CONTENT:

Module I: [5 Lectures]

Introduction to Research Methodology: Meaning of Research, Objectives of Research, Purpose of Research, Types of Research, Research Approaches, Significance of Research, Criteria of Good Research.
Selection and formulation of a Research Problem: Meaning of research problem, choosing the problem, Review of Literature, Formulating the problem, Objective of formulating the problem, Techniques involved in formulating problem.

Module II: [6 Lectures]

Module III: [10 Lectures]

Methods of Data Collection: Meaning and importance of Data, Primary sources of Data, Secondary sources of Data, Methods of collecting Data.
Module IV: [7 Lectures]

Presentation tool: Introduction to Presentation Tool, Features & Functions, Creating Presentations, Customizing Presentation. [Tools used: Microsoft PowerPoint, Open Office or any other tool].

Module V: [7 Lectures]

New Developments in IPR: Administration of Patent System, New developments in IPR; IPR of Biological Systems, Computer Software etc., Traditional knowledge Case Studies, IPR and IITs.

Reference books:

Web Reference:
1. http://nptel.ac.in/courses/121106007/
2. http://nptel.ac.in/courses/107108011/

<table>
<thead>
<tr>
<th>Course Code</th>
<th>PC-MBT191</th>
</tr>
</thead>
<tbody>
<tr>
<td>Category</td>
<td>Laboratory I (Program Core)</td>
</tr>
<tr>
<td>Course Title</td>
<td>Genetic Engineering Lab</td>
</tr>
<tr>
<td>Scheme and Credits</td>
<td>L</td>
</tr>
<tr>
<td></td>
<td>0</td>
</tr>
</tbody>
</table>

COURSE OBJECTIVE:

The objectives of the course are:
1. The course covers practical knowledge of selected Molecular Biological techniques.
2. The course covers the basic and advanced techniques of genetic engineering.

COURSE OUTCOME (CO):

After successful completion of this course, the student will be able to:

1. Demonstrate and explain Cloning strategies.
2. Understand and analyze the expression of recombinant proteins.
3. Learn, demonstrate and explain the different types of PCR.
4. Demonstrate and explain the working principle of RNAi in model organism.

COURSE CONTENT:

1. Isolation and characterization of genomic DNA from Bacteria, plant and animal and soil samples
2. Isolation and characterization of RNA
3. Preparation cDNA and amplification
4. Designing cloning strategies
5. Hybridization -southern (Demonstration)
6. RAPD analysis of different strains of bacteria and plant samples.
7. Allelic specific PCR

References:

<table>
<thead>
<tr>
<th>Course Code</th>
<th>PC-MBT192</th>
</tr>
</thead>
<tbody>
<tr>
<td>Category</td>
<td>Laboratory II (Program Core)</td>
</tr>
<tr>
<td>Course Title</td>
<td>Plant Genetic Engineering Laboratory</td>
</tr>
<tr>
<td>Scheme and Credits</td>
<td>L T P Cr. Points Lab. Hrs. Semester: I</td>
</tr>
<tr>
<td></td>
<td>0 0 2 2 48</td>
</tr>
</tbody>
</table>

COURSE OBJECTIVE:

The objectives of the course are:

1. To learn different aseptic techniques for establishment of an aseptic in vitro culture.
2. To study and prepare the different composition of plant tissue culture media
3. To develop the skills in plant tissue culture techniques for established the protocols of plant gene transfer technology.
4. To train students in strategizing research methodologies employing genetic engineering techniques.

COURSE OUTCOME (CO):

After successful completion of this course, the student will be able to:

1. Define and recall the various components of plant tissue culture.
2. Describe, discuss and explain various aseptic culture techniques for establishment of plant tissue culture.
3. Calculate the composition of various plant tissue culture media and prepare it.
4. Understand and explain the various modern tools used in plant gene transfer technology presently used in PTC-Industry.
5. Explain and demonstrate various protocols of plant gene transfer technology.
6. Management of research and commercial laboratory in the field of Plant Biotechnology.
COURSE CONTENT:

1. Introduction to plant tissue culture laboratory and its organization
2. Different aseptic culture techniques for establishment and maintenance of cultures
3. Preparation of stock solutions of various plant tissue culture medium (e.g. MS, B5, N6, WPM etc.) and plant growth regulator
4. Germination of seeds in vitro
5. Micropropagation of Tobacco plant by leaf disc culture
6. Techniques of in vitro culture (Explant selection, sterilization, inoculation, Multiplication, subculture and hardening)
7. Preparation of competent cells
8. Transformation of competent cells with plant transformation vectors
9. Small scale plasmid preparation
10. Restriction digestion
11. DNA check run by agarose electrophoresis
12. Demonstration of Agrobacterium mediated plant transformation (crown gall/ hairy root/GUS gene transfer)
13. Isolation of plant genomic DNA
14. Molecular analysis of transformed plants by Polymerase Chain Reaction
15. Perform RAPD or ISSR to assess the genetic variability

Reference books:

SECOND SEMESTER

<table>
<thead>
<tr>
<th>Course Code</th>
<th>PC-MBT201</th>
</tr>
</thead>
<tbody>
<tr>
<td>Category</td>
<td>Program Core III</td>
</tr>
<tr>
<td>Course Title</td>
<td>Bioinformatics</td>
</tr>
<tr>
<td>Scheme and Credits</td>
<td>L</td>
</tr>
<tr>
<td></td>
<td>3</td>
</tr>
</tbody>
</table>

COURSE OBJECTIVES:

1. Student will exhibit depth and breadth of knowledge by demonstrating a well-developed understanding of biological sciences.
2. Student will be able to critically analyze and solve problems in biotechnology by gathering, synthesizing and critically evaluating information from a range of sources.
COURSE OUTCOMES:

By the end of the course, student should be able to:

1. **Understand** the theoretical basis behind bioinformatics. **Search** databases accessible on the internet for literature relating to Molecular Biology and Biotechnology.
2. **Manipulate** DNA and protein sequences using stand-alone PC programs and programs available on the internet.
3. **Find** homologues, **analyze** sequences, **construct** and **interpret** evolutionary trees.
4. **Analyze** protein sequences, **identify** proteins, and **retrieve** protein structures from databases. **View** and **interpret** these structures.
5. **Understand** structure determination, homology modeling and computational drug design.
6. **Query** biological data, **interpret** and **model** biological information and **apply** this to the solution of biological problems in any arena involving molecular data.

COURSE CONTENT:

Module I: Introduction to bioinformatics
Sequence databases; Similarity matrices; Pair wise alignment: Features of dynamic Programming, alignment by Bayesian Statistical Methods, multiple sequence alignment: local multiple sequence alignment: MEME, PSSM, HMM(algorithms and applications) Progressive methods for global multiple sequence alignment: CLUSTALW, PILEUP, T COFFEE; Statistical significance of alignment results.

Module II: Pattern analysis in sequences
Motif representation: consensus, regular expressions; PSSMs; Markov models; Regulatory sequence identification using Meme; Gene finding: composition based finding, sequence motifbasedfinding.

Module III: Pattern analysis in sequences and Phylogenetic tree construction methods
Motif representation, Markov models; Distance Based methods: clustering based methods, optimality based methods: Fitsch-Margoliash and Minimum evolution methods, Neighbor joining, Character Based methods: Maximum parsimony methods, Maximum likely hood method, genetic algorithm, Phylogenetic tree evaluation.

Module IV: Structure-Prediction of Biomolecules with applications in Bioinformatics
Structure classification of proteins (SCOP, CATH); Secondary structure prediction of various protein categories (e.g. transmembrane proteins and helical proteins), RNA secondary structure prediction methods. Patterns, motifs and Profiles in sequences: Derivation and search methods; Derived Databases of patterns, motifs and profiles e.g. Prosite, Blocks, Prints- S, P fam. Protein structure prediction by comparative modelling approaches (homology modeling and fold recognition); ab initio structure prediction methods.

Module V: Molecular Modeling and drug design
Force fields and their evaluation (e.g MM2, AMBER) Monte Carlo and molecular dynamics
simulations (e.g. GROMACS); simulation approaches towards protein and nucleic acid conformation determination; Energy minimization techniques; Structure comparison using database formalisms(DALI, VAST etc.); CASP for dry-wet structure comparisons. Classification of drug targets, Target discovery and validation methodologies Types of drug targets and characterization of drugs, Structure based drug design methods including computer-aided drug design (pharmacophore development) and recent technology developments; Target selection, Ligand (lead compound) design, optimization and analysis; Protein-ligand docking; QSAR; physicochemical molecular descriptors; ADME parameters and their optimization; drug deliverability, metabolism, toxicity and pharmacokinetics; molecular diversity and Combichem; discussion of drug design to drug discovery to drug development with pharmaceutical/biotech drug case studies.

References:
8. Andrew Leach, Molecular Modelling: Principles and Applications, Pearson Education

<table>
<thead>
<tr>
<th>Course Code</th>
<th>PC-MBT202</th>
</tr>
</thead>
<tbody>
<tr>
<td>Category</td>
<td>Program Core IV</td>
</tr>
<tr>
<td>Course Title</td>
<td>Animal Cell Culture</td>
</tr>
<tr>
<td>Scheme and Credits</td>
<td>L T P Cr. Points</td>
</tr>
<tr>
<td></td>
<td>3 0 0 3</td>
</tr>
</tbody>
</table>

COURSE OBJECTIVES:

The goal of Animal Cell Culture course is for students to acquire the necessary theoretical skills on animal tissue culture perspective. First, it provides detailed insights regarding the isolation of animal cells for *in vitro* studies, maintenance of animal cells *in vivo*, manipulation of animal cells *in vitro*, application of molecular techniques to *in vitro* situations. Furthermore the students will acquire knowledge in areas of cloning, large animal models for disease and development of therapies and treatments. This class will cover basic cellular and molecular biology techniques involved in animal cell culture and their applications in a real world research setting.

COURSE OUTCOMES:

At the end of the course, a student will be able to:

1. **Explain** the various components of cell and tissue culture media as well as establishment and optimization of media for particular purposes in different species and cell lines.
2. **Explain, design, analyze** and **perform** the common cell culture techniques, cytotoxicity and viability assays for toxicological and pharmacological studies.
3. **Design** the experiment for development of primary established cell culture and characterize the various cell
lines used in mammalian tissue culture in relation to their origins and uses.

4. **Describe, analyze and design** the criteria in consideration for scale up of cell culture as well as the appropriate cell model for a large scale process involved in the production of human and animal viral vaccines and pharmaceutical proteins.

5. **Explain, assess and design** the strategies involved in toxicological study, cell cycle regulation study, apoptosis, drug testing, transgenic animal technology as well as **analyze** important social & environmental problems regarding genetically modified cell and organ models and identify ways to contribute to the solutions, including professional, economic and ethical considerations in social, industrial, medical & agricultural fields.

6. **Explain, assess and coalesce** the multidisciplinary need of animal biotechnology with the solution provided by the optimized and modernized animal tissue culture techniques at lab scale, pilot scale and ultimately industrial scale level as well as be able to **communicate** efficiently by preparing proper technical plans through meticulous reports at the end followed by sound oral explanations.

COURSE CONTENT:

Module I: (12 hrs)

Cell culture Laboratory design & Equipments, History of animal cell culture; Different tissue culture techniques; Types of primary culture; Secondary culture; Trypsinization; Cell separation; Continuous cell lines; Suspension culture; Organ culture etc.; Behavior of cells in culture conditions: division, growth pattern, estimation of cell number; Development of cell lines; Characterization and maintenance of cell lines, Cryopreservation; Common cell culture contaminants; Cell cloning and selection; Transfection and transformation of cells. Marker gene characterization; Stem cell: types, properties and their applications in animal cloning, therapeutics; Transient Recombinant Protein Expression in Mammalian Cells; Production of human and animal viral vaccines and pharmaceutical proteins. Overview of Cell Culture Engineering for the Insect Cell-Baculovirus Expression Vector System.

Module II: (12 hrs)

Media and reagents

Types of cell culture media; Ingredients of media; Physiochemical properties; CO₂ and bicarbonates; Buffering; Oxygen; Osmolarity; Temperature; Surface tension and foaming; Balance salt solutions; Antibiotics, growth supplements; Foetal bovine serum; Serum free media; Selection of medium and serum; Conditioned media; Other cell culture reagents; Preparation and sterilization of cell culture media, serum and other reagents.

Module III: (12 hrs)

Growth and scale up of animal cell:

Animal cell growth characteristics and kinetics; Cell culture reactors; Scale-up in suspension; Scale and complexity; Mixing and aeration; Rotating chambers; Perfused suspension cultures; Fluidized bed reactors for suspension culture; Scale-up in monolayers; Multisurface propagators; Multiarray disks, spirals and tubes; Roller culture; Micro-carrier attached growth; Cell culture in continuous, perfusion and hollow fibre reactor; Microencapsulation; Growth monitoring; Mass transfer in mammalian cell culture.

Module IV: (12 hrs)

Application of animal cell culture

Toxicological study, cell cycle regulation study, apoptosis, drug testing, various important techniques like FACS, confocal, immunofluorescence, immunohistochemistry etc. in animal cell culture.
Tumorigenesis, angiogenesis, metastasis in *in vivo* and *in vitro* studies, application of organ culture in virology and toxicology, cytogenetics studies, chromosome preparation and banding techniques, principles of cell separation and purification of cells and their products.

Transgenic Animals and Animal Cloning: Methodology, Embryonic stem cell method, Microinjection method, Retroviral method, Applications of transgenic animals, Transgenic animals as bioreactors.

References:
2. Nanoscale Technology in biological systems, Ralph S. Greco, Fritz B. Prinz, R. Lane Smithm CRC Press, 2005

<table>
<thead>
<tr>
<th>Course Code</th>
<th>PE-MBT203A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Category</td>
<td>Program Elective III</td>
</tr>
<tr>
<td>Course Title</td>
<td>Downstream Processing</td>
</tr>
<tr>
<td>Scheme and Credits</td>
<td>L</td>
</tr>
<tr>
<td></td>
<td>3</td>
</tr>
</tbody>
</table>

COURSE OBJECTIVES:

The objectives of the course are:

- To study the characteristics of biomolecules and to understand the principles of solid-liquid separation processes.
- To impart knowledge on various product isolation methods.
- To understand the principles of various types of high resolution techniques for valuable product purification.
- To study the principle of purification as well as concentration of product by different techniques like: precipitation, crystallization, drying and lyophilisation.
- To learn about how to develop and formulate methods to meet the need of pure proteins, enzymes and other valuable products related to biopharmaceuticals, clinical research and development.
COURSE OUTCOME (CO):

After successful completion of this course, the student will be able to:

1. **Describe the principles** that underlie major unit operations used in downstream processing of biotechnological and biopharmaceuticals.
2. **Define** terms associated with downstream processing and downstream process development.
3. **Design, execute and document** bench-scale studies to determine appropriate operating ranges and scale-up parameters for downstream processing steps.
4. **Design and formulate effective strategies** of downstream processing based on characteristics of biomolecules and to **learn the various techniques** of product capturing, isolation, purification and polishing.
5. **Analyze** the quality and characteristics of the purified product.
6. **Explain, recommend and demonstrate** the suitable downstream approaches comprising of new concepts and emerging technologies that are likely to benefit product recovery for small and large scale in the future.

COURSE CONTENT:

Module I: [5 Lectures]
Requirement of Downstream Processing
Overview of a bioprocess including upstream and downstream processing, Importance of downstream processing in biotechnology, characteristics of biological molecules and their separation characteristics based on stability & other biological properties, New Separation process in modern biotechnology; Selection of purification methodologies, Characteristics of fermentation broth & its pretreatment.

Module II: [5 Lectures]
Biomass Removal and Cell Disruption
Biomass removal and Cell disruption: Cell disruption by Mechanical and non mechanical methods, Chemical lysis, Enzymatic lysis, physical methods, Sonication, Types of Homogenizers, Flocculation.

Module III: [8 Lectures]
Product Isolation
Liquid - liquid extractions, Precipitation (salt, pH, organic solvent, high molecular weight polymer). Separation of particulate by filtrations, Rotary Vacuum Filtration, Centrifugation & Ultracentrifugation (Batch, continuous, basket), settling, sedimentation, decanting; Electrophoresis.

Module IV: [5 Lectures]
Membrane Based Separation
Membrane based purification: Microfiltration, Ultrafiltration, Reverse osmosis (UF and RO); Dialysis; Electrodialysis; Diafiltration; Pervaporation; Perstraction, Biotechnological application, Structure and
characteristics of membranes; Liquid membranes; Supported liquid membrane; Membrane reactors.

Module V: [12 Lectures]
Separation by Adsorption and Chromatography
Types of adsorption; adsorbents types and properties, Types of adsorption isotherms and their importance; Chromatography: general theory, partition coefficients, zone spreading, resolution and plate height concept and other chromatographic terms and parameters; chromatographic method selection; selection of matrix; separation based on size, charge, hydrophobicity and affinity: Gel filtration, Ion exchange chromatography and Chromatofocussing; Reverse phase chromatography (RPC) and hydrophobic interaction chromatography (HIC), Affinity chromatography (Specific vs Nonspecific); Covalent chromatography; HPLC, role of HPLC in protein characterization.

Module VI: [5 Lectures]
Product Polishing, Crystallization, Drying and Case Studies
Polishing of bioproducts by crystallization of small and large molecules, drying and formulations; CIPP/RIPP schemes for ethanol, methanol, citric acid and large scale upstream and downstream processing of recombinant products: intracellular proteins, penicillin, streptomycin, insulin, casein, interferon etc.

References:
5. Downstream Processing” by J.P. Hamel, J.B. Hunter and S.K. Sikdar, American Chemical Society
6. Protein Purification” by M.R. Ladisch, R.C. Wilson, C.C. Painton and S.E. Builder, American Chemical society,Verlag

Web Reference:
7. NPTEL: http://nptel.ac.in/courses/102106022/
8. NPTEL: http://nptel.ac.in/courses/102106048/
9. NPTEL: http://nptel.ac.in/courses/102103044/
10. NPTEL: http://nptel.ac.in/courses/104104066/
11. NPTEL: http://nptel.ac.in/courses/102107028/
12. ePgPathshala: http://epgp.inflibnet.ac.in/view_f.php?category=1204
13. ePgPathshala: http://epgp.inflibnet.ac.in/view_f.php?category=1354
COURSE OBJECTIVE:

The objectives of the course are:

1. To understand the relationship between biological phenomena and engineering design for effective bioreactor operations to achieve production
2. To apply the knowledge of bioprocess engineering to understand the basics of reactor design.

COURSE OUTCOME (CO):

After successful completion of this course, the student will be able to:

1. Apply the knowledge of bioprocess engineering to **identify and formulate problems** in chemical and biochemical reaction engineering and find appropriate solutions.
2. Able to analyze and **interpret the data of complex problem** using **modern engineering and computational tools** including prediction and modeling of different engineering activities.
3. Understand the relationship between **biological phenomena and engineering design** for effective bioreactor operations.
4. Able to analyze and formulate mechanisms for bioprocess achieve production goals for **societal issues** and **ability to learn** in the broad context of technological changes.

COURSE CONTENT:

Module I: 12L
Inoculums development, Introduction to fermentation process, Microbial growth kinetics Sterilization, Inocula Development, criteria for the transfer of inoculums, Development of inocula. Batch and continuous bioreactors, critical dilution rate, biomass productivity, comparison with batch cultures, residence time distribution, Test of validity, imperfect mixing, wall growth Transient state analysis, Turbidostat, Chemostat in series Applications. Fed batch operation, Perfusion system, Bioreactor consideration in immobilized cell system.

Module II : 12L
Plant and Animal Cell Bioreactor Plant cell bioreactors: characteristics of plant cell suspensions, plant cell bioreactor requirements, plant cell bioreactor design, plant cell bioreactor operation, alternative cultures for plant cells. Animal cells: Animal cell bioreactors, animal cell bioreactor operation, and animal cell bioreactor design.

Module III : 12L
Advanced Bioreactor: Stirred vessel reactors, Bubble column reactors, biochemical loop reactors and its applications, Biological wastewater treatment in reciprocating jet bioreactors, tower-shaped reactors for aerobic
biological wastewater treatment, Membrane bioreactors, Scale up of bioreactors.

Module IV: 12L
Bioreactor Instrumentation and Control Measurement of physical and chemical parameters in bioreactors: monitoring and control of dissolved oxygen, pH, impeller speed and temperature in stirred tank fermenter. Modeling of bioreactors, the model cycles, kind of models, complexity of the model, solving equations, parameter sensitivity, experimental design / parameter optimization / testing of the model.

References:

<table>
<thead>
<tr>
<th>Course Code</th>
<th>PE-MBT204A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Category</td>
<td>Program Elective IV</td>
</tr>
<tr>
<td>Course Title</td>
<td>Genomics and Proteomics</td>
</tr>
<tr>
<td>Scheme and Credits</td>
<td>L</td>
</tr>
<tr>
<td></td>
<td>3</td>
</tr>
</tbody>
</table>

COURSE OBJECTIVE:

The objectives of the course are:

1. This course will help students understanding the principles of genomic analysis of prokaryotes and eukaryotes.
2. This course is to teach students techniques in genomics and proteomics and application of these techniques in diverse fields.

COURSE OUTCOME (CO):

After successful completion of this course, the student will be able to:

1. Identify and describe the structural organization of prokaryotic and eukaryotic genomes.
2. Explain the current genomics technologies and demonstrate how these can be used to study gene function.
3. Execute various techniques including DNA sequencing, PCR and proteomics.
4. Interpret data obtained through high throughput expression studies.
5. Propose a experimental proposal to address a particular biological question.

COURSE CONTENT:

Module I: 12L Introduction
Structural organization of genome in Prokaryotes and Eukaryotes, Organelle DNA mitochondrial, chloroplast, DNA sequencing principles and methods, Recognition of coding and non-coding sequences, Gene annotation, Tools for genome analysis-RFLP, DNA fingerprinting, RAPD, PCR, Linkage and Pedigree analysis-physical and genetic mapping.

Module II: 12L Genome sequencing projects
Microbes, plants and animals, Accessing and retrieving genome project information from web, Comparative genomics, Identification and classification using molecular markers-16SrRNA typing/sequencing, EST’s and SNP’s.

Module III: 12L Proteomics
Protein analysis (includes measurement of concentration, amino acid composition, N-terminal sequencing), 2-Delectrophoresis of proteins, Peptide fingerprinting, LC/MS-MS for identification of proteins and modified proteins, MALDI- TOF, SAGE and Differential display proteomics, Protein-protein interactions, Pull-down assays (using GST-tagged protein); Protein arrays-definition; Applications- diagnostics, expression profiling.

Module IV: 12L Functional genomics and proteomics
Analysis of microarray data, Protein and peptide microarray-based technology, PCR-directed protein in situ arrays, Structural proteomics, Pharmacogenomics and pharamacogenetics and drug development; Toxicogenomics.

References:

<table>
<thead>
<tr>
<th>Course Code</th>
<th>PE-MBT204B</th>
</tr>
</thead>
<tbody>
<tr>
<td>Category</td>
<td>Program Elective IV</td>
</tr>
<tr>
<td>Course Title</td>
<td>Pharmaceutical Biotechnology</td>
</tr>
<tr>
<td>Scheme and Credits</td>
<td>L T P Cr. Points Lec. Hrs. Semester: II</td>
</tr>
<tr>
<td></td>
<td>3 0 0 3 48</td>
</tr>
</tbody>
</table>

COURSE OBJECTIVE:
The objectives of the course are:
1. The course covers various topics in Drug development, formulation and marketing.
2. The course will also cover properties of biopharmaceuticals and delivery methods

COURSE OUTCOME (CO):
After successful completion of this course, the student will be able to:
1. Provide an introduction to Drug development and the innovative processes in pharmaceuticals.
2. Understand, define and differentiate drug delivery methods.
3. Understand the process and methodology of drug action and mechanism.
4. Applying interdisciplinary subjects to analyze and evaluate different therapeutic approaches.
5. Understand, define and differentiate traditional and recombinant therapeutic molecules and their production.

COURSE CONTENT:
Module I: Drug development, Manufacturing, Formulation and Drug delivery processes (12L)

Module II: Drug kinetics and biopharmaceutics (12L)
Mechanism of drug absorption, distribution, metabolism and excretion – factors affecting the ADME process; Bioequivalence; Pharmacokinetics.

Module III: Principles of drug manufacture (12L)
Liquid dosage forms – solutions, suspensions and emulsions; Topical applications – ointments, creams, suppositories; Solid dosage forms – powders, granules, capsules, tablets, coating ofttablets; Aerosols; Preservation; Packing techniques

Module IV: Biopharmaceuticals (12L)
Understanding principles of pharmacology, pharmacodynamics; Study of a few classes of therapeutics like Recombinant therapeutics, Monoclonal Antibodies, Vaccines, Gene therapy, Antibiotics and Hormones.

References:

<table>
<thead>
<tr>
<th>Course Code</th>
<th>PC-MBT291</th>
</tr>
</thead>
<tbody>
<tr>
<td>Category</td>
<td>Laboratory III</td>
</tr>
<tr>
<td>Course Title</td>
<td>Bioinformatics Lab</td>
</tr>
<tr>
<td>Scheme and Credits</td>
<td>L</td>
</tr>
<tr>
<td></td>
<td>0</td>
</tr>
</tbody>
</table>

COURSE OBJECTIVES:
This course emphasizes the hands-on applications of bioinformatics methods to biological problems. Students will gain experience in the application of existing software as well as in combining approaches to answer specific biological questions.

COURSE OUTCOMES:
By the end of the course, students will be able to do the following:

1. Explain why bioinformatics approaches are important in understanding and interpreting results in many
different areas of biological study.

2. Use various existing bioinformatics tools in combination to answer complex scientific questions.

3. Develop critical analysis and research skills that can be applied to understand and use new bioinformatics tools that are developed in the future.

5. Develop software tools under good-practice guidelines.

COURSE CONTENT:

1. Introduction to Bioinformatics lab and some useful terminologies. Handling of different primary databases and retrieval of primary data of both protein and nucleotide (Expasy, Entrez) of a particular group or type of an enzyme. Handling of different specialized databases: Pathway-KEGG, Disease databases (cancer and other disease databases), protein folding classification databases-FSSP, different genomic databases.

2. Different approaches of Prediction of Genes: Promoters, splice sites, regulatory regions (Basic principles) application of methods to prokaryotic and eukaryotic genomes and interpretation of results.

3. Sequence based and structure-based approaches to assignment of gene functions, e.g. sequence comparison, structure analysis (especially active sites, binding sites) and comparison, pattern identification, etc.

4. Different approaches of Identification of Disease Genes: Based on some specialized general databases and specific disease databases.

5. Use of various derived databases in structure and function assignment, gene expression profiling.

7. Study to find out potential drug targets for cardio vascular, neurological diseases etc. using proprietary and public domain softwares (eg. VEGAZZ) (ligand design, optimization and improvement).

References:

8. Andrew Leach, Molecular Modelling: Principles and Applications, Pearson Education
Course Code: PC-MBT292
Category: Laboratory IV
Course Title: Animal Cell Culture Lab
Scheme and Credits:
<table>
<thead>
<tr>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Cr. Points</th>
<th>Lec. Hrs.</th>
<th>Semester: II</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>4</td>
<td>2</td>
<td>48</td>
<td></td>
</tr>
</tbody>
</table>

COURSE OBJECTIVE:

The objective of the course is:

The laboratory emphasizes the principles and practices of initiation, cultivation, maintenance, and the preservation techniques of cell lines.

COURSE OUTCOME:

After completion of the course students will be able to:

1. **Understand** the basic requirements for growing mammalian cells in culture.
2. **Explain, design, analyze** and **perform** successful assess cell viability, growth and maintenance of adherent and suspension cell cultures without contamination.
3. **Understand** methods commonly used to transform and select cells, assess cell viability, freeze viable cells and recover these cells for future assays.

COURSE CONTENT:

1. Basic sterilization techniques for animal cell culture.
2. Preparation of complete medium.
3. Trypsinization, freezing, thawing of cells.
4. Suspension Culture.
5. Attached Culture.
6. Serum starvation study.
7. Toxicity study by MTT/Trypan Blue assay.
8. Transfection.

References

COURSE OBJECTIVE:

The objective of the course is:

To enhance skill of the students in the area of Biochemical engineering, Bioprocess equipment design, analysis along with introductory skills used in the biotechnology industry.

COURSE OUTCOME:

After completion of the course students will be able to:

1. Understand, define and recall the different parts of Bioreactor and its live operation.
2. Understand the kinetics of different fermentation process.
3. Determine the volumetric mass transfer co-efficient ($K_{L,a}$) and mixing time of a reactor.

COURSE CONTENT:

PART B:

1. Demonstration of different parts of Bioreactor (NBS-BIOFLO-110).
2. Demonstration and real time operation of different parts of Bioreactor (BIOSTAT-A).
3. Study of the growth kinetics of $E. coli$ in Bioreactor
5. Determination of volumetric mass transfer co-efficient ($K_{L,a}$)

References
SESSIONAL

<table>
<thead>
<tr>
<th>Subject Code : SE-MBT281</th>
<th>Category : Mini Project</th>
</tr>
</thead>
<tbody>
<tr>
<td>Subject Name : Mini Project with Seminar</td>
<td>Semester : II</td>
</tr>
<tr>
<td>L-T-P :0-0-4</td>
<td>Credit:2</td>
</tr>
</tbody>
</table>

Mini Project would be to do some preliminary works that would lead to the detailed project work spanning over Semester III and IV. Related to the same, the Seminar would be based on literature review on some emerging areas related to this course and the preliminary works done on the mini project. Seminar presentation would be made by an individual student, and a report would have to be submitted by each student separately.

AUDIT COURSES (1 and 2)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>AC-MBT101A / AC-MBT201A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Category</td>
<td>AUDIT COURSE1 & 2</td>
</tr>
<tr>
<td>Course Title</td>
<td>ENGLISH FOR RESEARCH PAPER WRITING</td>
</tr>
<tr>
<td>Scheme and Credits</td>
<td>L</td>
</tr>
<tr>
<td></td>
<td>2</td>
</tr>
</tbody>
</table>

COURSE OBJECTIVES:

Students will be able to:
1. Understand that how to improve your writing skills and level of readability
2. Learn about what to write in each section
3. Understand the skills needed when writing a Title
Ensure the good quality of paper at very first-time submission

COURSE CONTENTS:

Module 1: 4 Hours
Planning and Preparation, Word Order, Breaking up long sentences, Structuring Paragraphs and Sentences, Being Concise and Removing Redundancy, Avoiding Ambiguity and Vagueness

Module 2: 4 Hours

Module 3: 4 Hours
Review of the Literature, Methods, Results, Discussion, Conclusions, The Final Check.
Module 4: 4 Hours
key skills are needed when writing a Title, key skills are needed when writing an Abstract, key skills are needed when writing an Introduction, skills needed when writing a Review of the Literature.

Module 5: 4 Hours
Skills are needed when writing the Methods, skills needed when writing the Results, skills are needed when writing the Discussion, and skills are needed when writing the Conclusions.

Module 6: 4 Hours
useful phrases, how to ensure paper is as good as it could possibly be the first-time submission.

Suggested Studies:
2. Model Curriculum of Engineering & Technology PG Courses [Volume-I]

Course Code: AC-MBT101B/ AC-MBT201B
Category: AUDIT COURSE 1 & 2
Course Title: PEDAGOGY STUDIES
Scheme and Credits:
<table>
<thead>
<tr>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Cr. Points</th>
<th>Lec. Hrs.</th>
<th>Semester: I or II</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>16</td>
<td></td>
</tr>
</tbody>
</table>

COURSE OBJECTIVES:

Students will be able to:
1. Review existing evidence on the review topic to inform programme design and policymaking undertaken by the DFID, other agencies and researchers.
2. Identify critical evidence gaps to guide the development.

COURSE OUTCOMES:

Students will be able to understand:
1. What pedagogical practices are being used by teachers in formal and informal classrooms in developing countries?
2. What is the evidence on the effectiveness of these pedagogical practices, in what conditions, and with what population of learners?
3. How can teacher education (curriculum and practicum) and the school curriculum and guidance materials best support effective pedagogy?

COURSE CONTENTS:

Module 1: 4 Hours
Introduction and Methodology:
Aims and rationale, Policy background, Conceptual framework and terminology
Theories of learning, Curriculum, Teacher education.
Conceptual framework, Research questions.
Overview of methodology and Searching.

Module 2: 2 Hours
Thematic overview: Pedagogical practices are being used by teachers in formal and informal classrooms in developing countries.
Curriculum, Teacher education.

Module 3: 4 Hours
Evidence on the effectiveness of pedagogical practices
Methodology for the in depth stage: quality assessment of included studies.
How can teacher education (curriculum and practicum) and the school curriculum and guidance materials best support effective pedagogy?
Theory of change.
Strength and nature of the body of evidence for effective pedagogical practices.
Pedagogic theory and pedagogical approaches.
Teachers’ attitudes and beliefs and Pedagogic strategies.

Module 4: 4 Hours
Professional development: alignment with classroom practices and follow-up support
Peer support
Support from the head teacher and the community.
Curriculum and assessment
Barriers to learning: limited resources and large class sizes

Module 5: 2 Hours
Research gaps and future directions
Research design
Contexts
Pedagogy
Teacher education
Curriculum and assessment
Dissemination and research impact.

SUGGESTED READING
Course Code	AC-MBT101C/ AC-MBT201C
Category	AUDIT COURSE 1 & 2
Course Title	CONSTITUTION OF INDIA
Scheme and Credits	L
	2

COURSE OBJECTIVES:

Students will be able to:
1. Understand the premises informing the twin themes of liberty and freedom from a civil rights perspective.
2. To address the growth of Indian opinion regarding modern Indian intellectuals’ constitutional role and entitlement to civil and economic rights as well as the emergence of nationhood in the early years of Indian nationalism.
3. To address the role of socialism in India after the commencement of the Bolshevik Revolution in 1917 and its impact on the initial drafting of the Indian Constitution.

COURSE OUTCOMES:

Students will be able to:
1. Discuss the growth of the demand for civil rights in India for the bulk of Indians before the arrival of Gandhi in Indian politics.
2. Discuss the intellectual origins of the framework of argument that informed the conceptualization of social reforms leading to revolution in India.
3. Discuss the circumstances surrounding the foundation of the Congress Socialist Party [CSP] under the leadership of Jawaharlal Nehru and the eventual failure of the proposal of direct elections through adult suffrage in the Indian Constitution.

COURSE CONTENT:

Module 1: 4 Hours
• History of Making of the Indian Constitution:
 History
 Drafting Committee, (Composition & Working)

Module 2: 4 Hours
• Philosophy of the Indian Constitution:
 Preamble
 Salient Features

Module 3: 4 Hours
• **Contours of Constitutional Rights & Duties:**
 - Fundamental Rights
 - Right to Equality
 - Right to Freedom
 - Right against Exploitation
 - Right to Freedom of Religion
 - Cultural and Educational Rights
 - Right to Constitutional Remedies
 - Directive Principles of State Policy
 - Fundamental Duties.

Module 4: 4 Hours

• **Organs of Governance:**
 - Parliament
 - Composition
 - Qualifications and Disqualifications
 - Powers and Functions
 - Executive
 - President
 - Governor
 - Council of Ministers
 - Judiciary, Appointment and Transfer of Judges, Qualifications
 - Powers and Functions

Module 5: 4 Hours

• **Local Administration:**
 - District’s Administration head: Role and Importance,
 - Municipalities: Introduction, Mayor and role of Elected Representative, CEO of Municipal Corporation.
 - Elected officials and their roles, CEO Zila Pachayat: Position and role.
 - Block level: Organizational Hierarchy (Different departments),
 - Village level: Role of Elected and Appointed officials,
 - Importance of grass root democracy

Module 6: 4 Hours

• **Election Commission:**
 - Election Commission: Role and Functioning.
 - Chief Election Commissioner and Election Commissioners.
 - State Election Commission: Role and Functioning.
 - Institute and Bodies for the welfare of SC/ST/OBC and women.

References

1. The Constitution of India, 1950 (Bare Act), Government Publication.
Course Code: AC-MBT101D/ AC-MBT201D
Category: AUDIT COURSE 1 & 2
Course Title: DISASTER MANAGEMENT

<table>
<thead>
<tr>
<th>Scheme and Credits</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Cr. Points</th>
<th>Lec. Hrs.</th>
<th>Semester: I or II</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>24</td>
<td></td>
</tr>
</tbody>
</table>

COURSE OBJECTIVES:

Students will be able to:
1. Learn to demonstrate a critical understanding of key concepts in disaster risk reduction and humanitarian response.
2. Critically evaluate disaster risk reduction and humanitarian response policy and practice from multiple perspectives.
3. Develop an understanding of standards of humanitarian response and practical relevance in specific types of disasters and conflict situations.
4. Critically understand the strengths and weaknesses of disaster management approaches, planning and programming in different countries, particularly their home country or the countries they work in.

COURSE CONTENTS:

Module 1: 4 Hours
Introduction
Disaster: Definition, Factors and Significance; Difference Between Hazard And Disaster; Natural And Manmade Disasters: Difference, Nature, Types And Magnitude.

Module 2: 4 Hours

Module 3: 4 Hours
Disaster Prone Areas In India
Study of Seismic Zones; Areas Prone To Floods and Droughts, Landslides and Avalanches; Areas Prone To Cyclonic and Coastal Hazards WithSpecial Reference To Tsunami; Post-Disaster Diseases And Epidemics.

Module 4: 4 Hours
Disaster Preparedness And Management
Preparedness: Monitoring Of Phenomena Triggering A Disaster Or Hazard; Evaluation Of Risk: Application Of Remote Sensing, Data From Meteorological and Other Agencies, Media Reports: Governmental and Community Preparedness.

Module 5: 4 Hours
Risk Assessment
Disaster Risk: Concept and Elements, Disaster Risk Reduction, Global and National Disaster Risk Situation.
Techniques of Risk Assessment, Global Co-Operation In Risk Assessment and Warning, People’s Participation In Risk Assessment. Strategies for Survival.

Module 6: 4 Hours
Disaster Mitigation
Meaning, Concept and Strategies of Disaster Mitigation, Emerging Trends In Mitigation. Structural Mitigation and Non-Structural Mitigation, Programs of Disaster Mitigation in India.

SUGGESTED READINGS:
2. Sahni, Pardeep Et. Al. (Eds.),” Disaster Mitigation Experiences and Reflections”, Prentice Hall Of India, New Delhi.

<table>
<thead>
<tr>
<th>Course Code</th>
<th>AC-MBT101E/ AC-MBT201E</th>
</tr>
</thead>
<tbody>
<tr>
<td>Category</td>
<td>AUDIT COURSE 1& 2</td>
</tr>
<tr>
<td>Course Title</td>
<td>VALUE EDUCATION</td>
</tr>
<tr>
<td>Scheme and Credits</td>
<td>L T P Cr. Points Lec. Hrs. Semester: I or II</td>
</tr>
<tr>
<td></td>
<td>4 0 0 0 24</td>
</tr>
</tbody>
</table>

COURSE OBJECTIVES:
Students will be able to
1. Understand value of education and self- development
2. Imbibe good values in students
3. Let the should know about the importance of character

COURSE OUTCOMES:
Students will be able to
1. Knowledge of self-development
2. Learn the importance of Human values
3. Developing the overall personality

COURSE CONTENTS:

Module 1: 4 Hours
- Values and self-development –Social values and individualattitudes. Work ethics, Indian vision of humanism.
- Value judgements

Module 2: 6 Hours
- Importance of cultivation of values.
- Patriotism. Love for nature, Discipline

Module 3: 6 Hours

- Personality and Behavior Development - Soul and Scientific attitude. Positive Thinking. Integrity and discipline.
- Punctuality, Love and Kindness.
- Avoid fault Thinking.
- Free from anger, Dignity of labour.
- Universal brotherhood and religious tolerance.
- True friendship.
- Happiness Vs suffering, love for truth.
- Aware of self-destructive habits.
- Association and Cooperation.
- Doing best for saving nature

Module 4: 6 Hours

- Character and Competence –Holy books vs Blind faith.
- Self-management and Good health.
- Science of reincarnation.
- Equality, Nonviolence, Humility, Role of Women.
- All religions and same message.
- Mind your Mind, Self-control.
- Honesty, Studying effectively

References

<table>
<thead>
<tr>
<th>Course Code</th>
<th>AC-MBT101F /AC-MBT201F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Category</td>
<td>AUDIT COURSE 1 & 2</td>
</tr>
<tr>
<td>Course Title</td>
<td>STRESS MANAGEMENT BY YOGA</td>
</tr>
<tr>
<td>Scheme and Credits</td>
<td>L T P Cr. Points Lec. Hrs. Semester: I or II</td>
</tr>
<tr>
<td></td>
<td>2 0 0 0 24</td>
</tr>
</tbody>
</table>

COURSE OBJECTIVES:

1. To achieve overall health of body and mind
2. To overcome stress

COURSE OUTCOMES:

Students will be able to:
1. Develop healthy mind in a healthy body thus improving social health also
2. Improve efficiency
COURSE CONTENTS:

Module 1: 8 Hours
- Definitions of Eight parts of yog. (Ashtanga)

Module 2: 8 Hours
- Yam and Niyam.

Do’s and Don’t’s in life.
 i) Ahinsa, satya, astheya, bramhacharya and aparigraha
 ii) Shaucha, santosh, tapa, swadhyay, ishwarpranidhan

Module 3: 8 Hours
- Asan and Pranayam

 i) Various yog poses and their benefits for mind & body
 ii) Regularization of breathing techniques and its effects - Types of pranayam

References
1. ‘Yogic Asanas for Group Training - Part I’ : Janardan Swami Yogabhyasi Mandal, Nagpur
2. “Rajayoga or conquering the Internal Nature” by Swami Vivekananda, Advaita Ashrama (Publication Department), Kolkata

<table>
<thead>
<tr>
<th>Course Code</th>
<th>AC-MBT101G/AC-MBT201G</th>
</tr>
</thead>
<tbody>
<tr>
<td>Category</td>
<td>AUDIT COURSE 1 & 2</td>
</tr>
<tr>
<td>Course Title</td>
<td>PERSONALITY DEVELOPMENT THROUGH LIFE ENLIGHTENMENT SKILLS</td>
</tr>
<tr>
<td>Scheme and Credits</td>
<td>L T P Cr. Points Lec. Hrs. Semester: I or II</td>
</tr>
<tr>
<td></td>
<td>2 0 0 0 24</td>
</tr>
</tbody>
</table>

COURSE OBJECTIVES:
1. To learn to achieve the highest goal happily
2. To become a person with stable mind, pleasing personality and determination
3. To awaken wisdom in students

COURSE OUTCOMES:
Students will be able to
1. Study of Shrimad-Bhagwad-Geeta will help the student in developing his personality and achieve the highest goal in life
2. The person who has studied Geeta will lead the nation and mankind to peace and prosperity
3. Study of Neetishatakam will help in developing versatile personality of students.

COURSE CONTENTS:
Module 1: 8 Hours
Neetisatakam-Holistic development of personality
- Verses- 19,20,21,22 (wisdom)
- Verses- 29,31,32 (pride & heroism)
- Verses- 26,28,63,65 (virtue)
- Verses- 52,53,59 (don’ts)
- Verses- 71,73,75,78 (do’s)

Module 2: 8 Hours
- Approach to day to day work and duties.
- Shrimad Bhagwad Geeta : Chapter 2-Verses 41, 47,48,
- Chapter 3-Verses 13, 21, 27, 35, Chapter 6-Verses 5,13,17, 23, 35,
- Chapter 18-Verses 45, 46, 48.

Module 3: 8 Hours
- Statements of basic knowledge.
- Shrimadbhagwad Geeta: Chapter2-Verses 56, 62, 68
- Chapter 12 -Verses 13, 14, 15, 16,17, 18
- Personality of Role model. ShrimadbhagwadGeeta:Chapter2-Verses 17, Chapter 3-Verses 36,37,42,
- Chapter 4-Verses 18, 38,39
- Chapter18 – Verses 37,38,63

SUGGESTED READING
1. “Srimad Bhagavad Gita” by Swami Swarupananda Advaita Ashram (Publication Department), Kolkata
2. Bhartrihari’s Three Satakam (Niti-sringar-vairagya) by P.Gopinath,
3. Rashtriya Sanskrit Sansthanam, New Delhi.

<table>
<thead>
<tr>
<th>Course Code</th>
<th>AC-MBT101H/ AC-MBT201H</th>
</tr>
</thead>
<tbody>
<tr>
<td>Category</td>
<td>AUDIT COURSE 1 & 2</td>
</tr>
<tr>
<td>Course Title</td>
<td>SANSKRIT FOR TECHNICAL KNOWLEDGE</td>
</tr>
<tr>
<td>Scheme and Credits</td>
<td>L T P Cr. Points Lec. Hrs. Semester: I or II</td>
</tr>
<tr>
<td></td>
<td>2 0 0 0 24</td>
</tr>
</tbody>
</table>

COURSE OBJECTIVES:
1. To get a working knowledge in illustrious Sanskrit, the scientific language in the world
2. Learning of Sanskrit to improve brain functioning
3. Learning of Sanskrit to develop the logic in mathematics, science & other subjects enhancing the memory power
5. The engineering scholars equipped with Sanskrit will be able to explore the huge knowledge from ancient literature.

COURSE OUTCOMES:
Students will be able to
1. Understanding basic Sanskrit language
2. Ancient Sanskrit literature about science & technology can be understood
3. Being a logical language will help to develop logic in students

COURSE CONTENTS:

Module 1: 8 Hours
- Alphabets in Sanskrit,
- Past/Present/Future Tense,
- Simple Sentences

Module 2: 8 Hours
- Order
- Introduction of roots
- Technical information about Sanskrit Literature

Module 3: 8 Hours
- Technical concepts of Engineering-Electrical, Mechanical, Architecture, Mathematics

References
1. “Abhyaspustakam” – Dr. Vishwas, Samskrita-Bharti Publication, New Delhi
2. “Teach Yourself Sanskrit” Pratham Deeksha-Vempati Kutumbkhastri, Rashtriya Sanskrit Sansthanam, New Delhi Publication

THIRD SEMESTER

<table>
<thead>
<tr>
<th>Course Code</th>
<th>PE-MBT301A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Category</td>
<td>Program Elective V</td>
</tr>
<tr>
<td>Course Title</td>
<td>Biostatistics and Design of Experiments</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Scheme and Credits</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Cr. Points</th>
<th>Lec. Hrs.</th>
<th>Semester: III</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>48</td>
<td></td>
</tr>
</tbody>
</table>

COURSE OBJECTIVE:

The objectives of the course are:
1. To provide students with the foundations of probabilistic and statistical analysis.
2. To collect data and analyze problems in a critical manner.
3. To understand the exact method of data analysis and experimental design construction.
4. To learn the formal application of probability theory.

COURSE OUTCOME (CO):

After successful completion of this course, the student will be able to:
1. Apply basic statistical concepts commonly used in Biotechnology.
2. Use basic analytical techniques to generate results.
3. Demonstrate the design and analysis of statistical methods.
4. Demonstrate and understand the central concepts of modern statistical theory and their probabilistic foundation.
5. Design experiments to deal with real-life problems.

COURSE CONTENT:

Module I: [8 Lectures]

Preliminary concept: Characteristics and limitation of statistics, Application of Biostatistics

Data: Types of data, Frequency distributions, Cumulative frequency distribution, Graphical presentation of data

Central tendency: Arithmetic mean, Geometric mean, median, mode, Other measures of central tendency

Measures of variation: The range, Dispersion measured with quantiles, Mean deviation, Variance, Standard deviation, Coefficient of variance

Module II: [5 Lectures]

Skewness, Kurtosis and Moments Correlation and Regression, Curve fitting, Nonlinear data fitting, Confidence intervals

Module III: [10 Lectures]

Probabilities: Concept of Probability: introduction and basics counting principle, Permutations and Combinations, Conditional probability and Random variables, Probability mass function and Probability density function, Variance and Covariance, Expectation, Binomial random variables and Moment generating function

Probability distribution: Poisson distribution, Uniform distribution, Normal distribution, Exponential distribution, Sampling distributions and Central limit theorem,

Module IV: [15 Lectures]

Test of Hypothesis (1 tailed and 2 tailed Test of Hypothesis, p-value), Test of Hypothesis (Type -1 and Type -2 error), 1 tailed and 2 tailed T-distribution, Chi-square test, Analysis of variances (ANOVA)

Module V: [10 Lectures]

Design of experiments (DOE)

DOE introduction, Factorial design, Full factorial design, Fractional factorial design, Real life problem analysis by DOE, Concept of Orthogonal array, Taguchi DOE Method

Reference books:

1. Biostatistical Analysis - Jerrold H. Zar
2. Introduction to Probability & Statistics - Medenhall, Beaver, Beaver

Web Reference:

http://nptel.ac.in/courses/102106051/
https://nptel.ac.in/courses/110/105/110105087/
COURSE OBJECTIVE:
The objectives of the course are:

To introduce the different aspects of modeling in bioprocess system and to familiarize the simulation of bioprocess modeling.

COURSE OUTCOMES:

After completion of course, students would be able to:

1. Learn about the principles of bioprocess modeling and simulation.
2. Understand the mathematical models in biochemical engineering systems.
3. Familiar simulation software’s in different states.
4. Apply numerical methods in simulations.

COURSE CONTENT:

MODULE I: Approach to Modeling
Significance of modeling and simulation, kinetic models on different approaches; Deterministic and stochastic, structured and unstructured, segregated and unsegregated; examples of each. Compartamental models (two and four); product formation model; genetically structured models, modeling of extra cellular enzyme production.

MODULE II: Modeling of Bioprocess
Modeling of continuous sterilization of medium; modeling of activated sludge process with a control system; model for anaerobic digestion, model for SCP production form spent sulfite liquor. Models for external mass transfer, internal diffusion and reaction within biocatalysts, model for antibiotic formation; modeling of therapeutic protein production with recombinant cells.

MODULE III: Simulation Techniques (Software)
continuous system simulators (CSMP, INT, LEANS, MIDAS, MIMIC);dynamic process simulators (DYFLO, DYNSIS, PRODYC, REMUS); steady state material and energy balance programs(PACER, FLOWTRAN, CHESS);some aspects of INT and DYFLO programs; General arrangement of main program using INT subroutines.

MODULE IV: Simulation techniques (Numerical Methods)
Programs based on numerical methods like algebraic equations, Newton Raphson method for algebraic convergence, interpolation, arbitrary function generation (FUN1, FUN2 subroutines). Programs based on solution of differential equations: Eular method for 1st and 2nd order integration, subroutines INT and INTI; Fourth order

MODULE V: Case Studies

Case studies, Numerical problems.

References:

<table>
<thead>
<tr>
<th>Course Code</th>
<th>PE-MBT301C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Category</td>
<td>Program Elective V</td>
</tr>
<tr>
<td>Course Title</td>
<td>Problem Solving Through Programming in C</td>
</tr>
<tr>
<td>Scheme and Credits</td>
<td></td>
</tr>
<tr>
<td>L</td>
<td>T</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
</tr>
</tbody>
</table>

COURSE OBJECTIVE:

The objectives of the course are:

1. To provide exposure to problem-solving through programming.
2. To train the student to the basic concepts of the C-programming language.

This course involves a lab component which is designed to give the student hands-on experience with the concepts.

COURSE OUTCOMES:

After completion of course, students would be able to:

1. Illustrate the flowchart and design an algorithm for a given problem and to develop C programs using operators
2. Develop conditional and iterative statements to write C programs
3. Exercise user defined functions to solve real time problems
4. Inscribe C programs that use Pointers to access arrays, strings and functions.
5. Exercise user defined data types including structures and unions to solve problems.
6. Inscribe C programs using pointers and to allocate memory using dynamic memory management functions.

COURSE CONTENT:

MODULE 1: 4L

Introduction to Problem Solving through programs, Flowcharts/Pseudo codes, the compilation process, Syntax
and Semantic errors, Variables and Data Types.

MODULE 2: 7L
Arithmetic expressions, Relational Operations, Logical expressions; Introduction to Conditional Branching. Conditional Branching and Iterative Loops.

MODULE 3: 7L
Arranging things: Arrays 2-D arrays, Character Arrays and Strings

MODULE 4: 4L
Basic Algorithms including Numerical Algorithms

MODULE 5: 7L
Functions and Parameter Passing by Value Passing Arrays to Functions, Call by Reference

MODULE 6: 14L
Recursion Structures and Pointers Self-Referential Structures and Introductions to Lists Advanced Topics

MODULE 7: 5L
Handling biological problems through programming in C.

Reference Books

<table>
<thead>
<tr>
<th>Course Code</th>
<th>PE-MBT301D</th>
</tr>
</thead>
<tbody>
<tr>
<td>Category</td>
<td>Program Elective V</td>
</tr>
<tr>
<td>Course Title</td>
<td>Big Data Analytics</td>
</tr>
<tr>
<td>Scheme and Credits</td>
<td>L</td>
</tr>
<tr>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Pre-requisites</td>
<td>Data Structure, Computer Architecture and Organization</td>
</tr>
</tbody>
</table>

COURSE OBJECTIVE:

The objectives of the course are:

- Understand big data for business intelligence. Learn business case studies for big data analytics.
- Understand NoSQL big data management. Perform map-reduce analytics using Hadoop and related tools.

COURSE OUTCOMES:

After completion of course, students would be able to:

1. Describe big data and use cases from selected business domains
2. Explain NoSQL big data management
3. Install, configure, and run Hadoop and HDFS
4. Perform map-reduce analytics using Hadoop
5. Use Hadoop related tools such as HBase, Cassandra, Pig, and Hive for big data analytics.

COURSE CONTENT:

MODULE 1: 7L
What is big data, why big data, convergence of key trends, unstructured data, industry examples of big data, web analytics, big data and marketing, fraud and big data, risk and big data, credit risk management, big data and algorithmic trading, big data and healthcare, big data in medicine, advertising and big data, big data technologies, introduction to Hadoop, open source technologies, cloud and big data, mobile business intelligence, Crowd sourcing analytics, inter and trans firewall analytics.

MODULE 2: 8L
Introduction to NoSQL, aggregate data models, aggregates, key-value and document data models, relationships, graph databases, schemaless databases, materialized views, distribution models, sharding, master-slave replication, peer-to-peer replication, sharding and replication, consistency, relaxing consistency, version stamps, map-reduce, partitioning and combining, composing map-reduce calculations.

MODULE 3: 8L
Data format, analyzing data with Hadoop, scaling out, Hadoop streaming, Hadoop pipes, design of Hadoop distributed file system (HDFS), HDFS concepts, Java interface, data flow, Hadoop I/O, data integrity, compression, serialization, Avro, file-based data structures.

MODULE 4: 9L
MapReduce workflows, unit tests with MRUnit, test data and local tests, anatomy of Map Reduce job run, classic Map-reduce, YARN, failures in classic Map-reduce and YARN, job scheduling, shuffle and sort, task execution, MapReduce types, input formats, output formats.

MODULE 5: 7L
Hbase, data model and implementations, Hbase clients, Hbase examples, praxis. Cassandra, Cassandra data model, Cassandra examples, Cassandra clients, Hadoop integration.

MODULE 6: 6L
Pig, Grunt, pig data model, Pig Latin, developing and testing Pig Latin scripts. Hive, data types and file formats, HiveQL data definition, HiveQL data manipulation, HiveQL queries.

MODULE 7: 3L
Application of big data analytics in Biotechnology.

References:

<table>
<thead>
<tr>
<th>Course Code</th>
<th>PE-MBT301E</th>
</tr>
</thead>
<tbody>
<tr>
<td>Category</td>
<td>Program Elective II</td>
</tr>
<tr>
<td>Course Title</td>
<td>Nanobiotechnology</td>
</tr>
<tr>
<td>Scheme and Credits</td>
<td>L</td>
</tr>
<tr>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Semester: I</td>
<td></td>
</tr>
</tbody>
</table>

COURSE OBJECTIVE:

The objectives of the course are:

1. Course will deliver a comprehensive knowledge in synthesis and characterization of nanomaterials of various types.
2. Course will cover inter- and multi-disciplinary science and engineering.
3. Course will deliver various applications of nanotechnology in biomedical, food and cosmetics.

COURSE OUTCOME (CO):

After successful completion of this course, the student will be able to:

1. **Describe** and **interpret** the basic of synthesis and characterization of nanomaterials.
2. **Learn** and **analyze** the development of engineered nanomaterials.
3. **Solve** and **understand** scientific problems related to nanotechnological materials.
4. **Evaluate** various applications of nanomaterials in Foods and Cosmetics.
5. **Create** awareness on the toxicity of nanomaterials.

COURSE CONTENT:

Module I: [10 L] Engineered Nanomaterials Nanotechnology

Nanotechnology: Definition of nanoscale with reference to biosystems, Scope (Overview of current industry applications) and future prospects; Cellular Nanostructures, Nanopores, Biomolecular motors; Nanoscale Properties (Electrical, Optical, Chemical); Cellular Nanostructures; Nanopores; Biomolecular motors; Criteria for suitability of nanostructures for biological applications. Nanotechnology and environment.

Module II: [10 L] Basic characterization techniques

Characterization techniques: Electron microscopy; Atomic force microscopy; Photon correlation Spectroscopy; Scanning probe microscopy (AFM, STM), Diffraction techniques (XRD, synchrotron)

Module II: [10 L] Engineered Nanomaterials

Engineered Nanomaterials: Carbon nanomaterials (fullerenes, graphene, nanotubes, nanofibers); Metal nanoparticles (synthesis, properties and applications); Magnetic nanoparticles (synthesis, properties and applications); Quanatum dots, liquid crystals; Nanoporous materials (metalic, zeolite, MOFs)

Module IV: [10 L] Application of Nanotechnology

Health Care Nanotechnology
Nanotechnology in Biomedical and Life Sciences: Criteria for suitability of nanostructures for biological applications, Lipids as nano-bricks, Proteins as nanomolecules, DNA in nanotechnology, Present and future of nanotechnology applications in: a) Molecular biology (e.g. Hairpin Nanoprobes for gene detection, Control of Biomolecular Activity by Nanoparticle Antennas, Nanofibers and their applications in tissue engineering), b) Medicine (Public acceptance of nanomedicine, nanostructures for drug delivery, concepts, targeting, routes of delivery and advantages).

Foods and Cosmetics

Foods and Cosmetics - Bioavailability and Delivery of Nutraceuticals and Functional Foods Using Nanotechnology - Polymer-Based Nanocomposites for Food Packaging

References:
2. Nanoscale Technology in biological systems, Ralph S. Greco, Fritz B. Prinz, R. Lane Smithm CRC Press, 2005

<table>
<thead>
<tr>
<th>Course Code</th>
<th>PE-MBT301F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Category</td>
<td>Program Elective III</td>
</tr>
<tr>
<td>Course Title</td>
<td>Environmental Biotechnology</td>
</tr>
<tr>
<td>Scheme and Credits</td>
<td>L</td>
</tr>
<tr>
<td></td>
<td>3</td>
</tr>
</tbody>
</table>

COURSE OBJECTIVE:

The objectives of the course are:
1. To gain knowledge on the importance of environmental education and ecosystem.
2. To acquire knowledge about environmental pollution - sources, effects and control measures of environmental pollution.
3. To understand the treatment of wastewater and solid waste management.
4. To generate valuable resources for the human society.

COURSE OUTCOME (CO):

After successful completion of this course, the student will be able to:
1. Understand the concept of environment and elaborate the organization of ecosystem, its components.
2. Identify, understand, and distinguish the different environmental pollution associated to environmental degradation.
3. Describe the principles and techniques supporting the application of Biotechnology to the environment.
4. Design, formulate and develop different control mechanisms, devices to minimize the environmental pollution.
5. Identify, analyze the industrial activities on environmental pollution and its control mechanism.
6. Understand the principles of bioremediation, phytoremediation, biofuel, bioresource.

COURSE CONTENT:

Module I: [8 Lectures]
Introduction: Environment; Basic concepts; Role of Biotech in environmental protection; Control and management of biological processes
Ecosystem: Components of ecosystem; Ecosystem management; Genetic, species and ecosystem diversity – bio diversity hot spots; threats to biodiversity; Conservation of bio diversity: in-situ and ex-situ conservations

Module II: [10 Lectures]
Environmental pollution; Source of pollution; Air, water as a source of natural resource; Hydrocarbons; Oil pollution; Surfactants; Pesticides; Measurement of pollution; Water pollution; Biofilm; Soil pollution; Radioactive pollution; Radiation; Ozone depletion; Global warming and Green house effect; Acid rain, Eutrophication, Land degradation, Biomagnification; Impact of pollutants
Air pollution- control and treatment strategies; Determination of BOD, COD, TDS and trace metals

Module III: [15 Lectures]
Water/Wastewater Quality Enhancement: Wastewater characteristics; Primary, secondary and tertiary treatment; Philosophy of treatment; Physical, chemical and biological Unit operations process.
Physical Unit Processes: Screening; Commutation; Grit Removal; Equilization; Sedimentation;
Chemical Unit Processes: Coagulation-Flocculation; Filtration; Disinfections; Aeration and Gas transfer; Precipitation; Softening; Adsorption and Ion exchange; Membrane processes.
Biological Unit Processes: Aerobic treatment; Suspended growth aerobic treatment processes; Activated sludge process and its modifications; Attached growth aerobic processes; Tricking filters and Rotating biological contactors
Advanced Waste Water Treatment Limitations of conventional treatment, pathogen removal, toxic substances removal, phosphorous and nitrogen removal

Module IV: [15 Lectures]
Phytoremediation: phytoextraction, rhizofiltration, phytodegradation, phytovolatilization, rhizoremediation, phytostabilization.
Resources: Non-renewable and renewable energy resources.; Alternate source of energy, Biomass as source of energy, Bioreactors, Rural biotechnology, Biocomposting, Biofertilizers, Vermiculture, Organic farming, Biomineralization, Biofuels, Bioethanol and biohydrogen, Bioelectricity through microbial fuel cell, energy management and safety

Reference books:
2. Environmental Pollution Control Engineering, CS Rao, New Age International
3. Ecology and Environment, PD Sharma PD, Rastogi Publications, Delhi

Web Reference:
1. http://nptel.ac.in/courses/103107084/
2. http://nptel.ac.in/courses/105106119/
3. http://nptel.ac.in/courses/105105048/
4. http://nptel.ac.in/courses/103107084/
5. http://nptel.ac.in/courses/105104102/

<table>
<thead>
<tr>
<th>Course Code</th>
<th>PE-MBT301G</th>
</tr>
</thead>
<tbody>
<tr>
<td>Category</td>
<td>Program Elective IV</td>
</tr>
<tr>
<td>Course Title</td>
<td>Food Biotechnology</td>
</tr>
<tr>
<td>Scheme and Credits</td>
<td>L</td>
</tr>
<tr>
<td>()</td>
<td>3</td>
</tr>
<tr>
<td>Pre-requisites</td>
<td>-</td>
</tr>
</tbody>
</table>

COURSE OBJECTIVE:

This course will provide a broad grounding in concepts, techniques and issues involved in food products and their processing.

COURSE OUTCOME (CO):

After completion of course, students would be able to:

1. Realize and identify the biotechnological techniques involved in the improvement of food qualities.
2. Understand the principles involving food preservation and processing.
3. Understand the principles that make a food product safe for consumption.
4. Demonstrate knowledge of major scientific concepts, social, economic and ethical implications in the food sciences.

COURSE CONTENT:

Module II: Plant and Animal Food applications and functional food - Introduction to Nutraceutical and Nutigenomics, Bioavailability and delivery of nutraceuticals using nanotechnology Food and food component preventing cancer, Antiobesity effect of Alleniccarotenoid, fucoxanthin, Improvement in Food Quality- Enzymes & Recombinant lipoxygenases and oxylipin metabolism for food quality, Molecular design of Soybean Protein for improvement in Food Quality, Biotechnological Approaches to improve Nutritional Quality and Shelf life of Fruits and Vegetables, Genetic Modification of peanut as a solution to peanut Allergy.
Module III: Food Safety: DNA & Protein microarray for food Safety, Application of DNA Fingerprinting in Food Biotechnology, Application of Biosensors in food processing industry, antibody based diagnostic system. Food quality management, HACCP.

References:
1. Food Biotechnology: Kalidas Shetty
2. Fundamental of Food Biotechnology: Lee

OPEN ELECTIVES

<table>
<thead>
<tr>
<th>Course Code</th>
<th>OE-MBT301A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Category</td>
<td>Open Electives</td>
</tr>
<tr>
<td>Course Title</td>
<td>Business Analytics</td>
</tr>
<tr>
<td>Scheme and Credits</td>
<td>L T P Cr. Points Lec. Hrs.</td>
</tr>
<tr>
<td></td>
<td>3 0 0 3 48</td>
</tr>
</tbody>
</table>

Semester: III

COURSE OBJECTIVE:

1. Understand the role of business analytics within an organization.
2. Analyze data using statistical and data mining techniques and understand relationships between the underlying business processes of an organization.
3. To gain an understanding of how managers use business analytics to formulate and solve business problems and to support managerial decision making.
4. To become familiar with processes needed to develop, report, and analyze business data.
5. Use decision-making tools/Operations research techniques.
7. Analyze and solve problems from different industries such as manufacturing, service, retail, software, banking and finance, sports, pharmaceutical, aerospace etc..

COURSE OUTCOMES:

1. Students will demonstrate knowledge of data analytics.
2. Students will demonstrate the ability of think critically in making decisions based on data and deep analytics.
3. Students will demonstrate the ability to use technical skills in predicative and prescriptive modeling to support business decision-making.
4. Students will demonstrate the ability to translate data into clear, actionable insights.
COURSE CONTENT

MODULE I: 9L

MODULE II: 8L

MODULE III: 9L

MODULE IV: 10L

MODULE V: 8L
Decision Analysis: Formulating Decision Problems, Decision Strategies with the without Outcome Probabilities, Decision Trees, the Value of Information, Utility and Decision Making.

MODULE VI: 4L
Recent Trends in: Embedded and collaborative business intelligence, Visual data recovery, Data Storytelling and Data journalism.

REFERENCE:
2. Business Analytics by James Evans, persons Education.
Course Code: OE-MBT301B

Category: Open Electives

Course Title: Operations Research

<table>
<thead>
<tr>
<th>Scheme and Credits</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Cr. Points</th>
<th>Lec. Hrs.</th>
<th>Semester: III</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>48</td>
<td></td>
</tr>
</tbody>
</table>

COURSE OUTCOMES:

At the end of the course, the student should be able to
1. Students should able to apply the dynamic programming to solve problems of discreet and continuous variables.
2. Students should able to apply the concept of non-linear programming
3. Students should able to carry out sensitivity analysis
4. Student should able to model the real world problem and simulate it.

COURSE CONTENTS:

Module 1:
Optimization Techniques, Model Formulation, models, General L.R Formulation, Simplex Techniques, Sensitivity Analysis, Inventory Control Models

Module 2:
Formulation of a LPP - Graphical solution revised simplex method - duality theory - dual simplex method - sensitivity analysis - parametric programming

Module 3:
Nonlinear programming problem - Kuhn-Tucker conditions min cost flow problem - max flow problem - CPM/PERT

Module 4:
Scheduling and sequencing - single server and multiple server models - deterministic inventory models - Probabilistic inventory control models - Geometric Programming.

Module 5:
Competitive Models, Single and Multi-channel Problems, Sequencing Models, Dynamic Programming, Flow in Networks, Elementary Graph Theory, Game Theory Simulation

References:
<table>
<thead>
<tr>
<th>Course Code</th>
<th>OE-MBT301C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Category</td>
<td>Open Electives</td>
</tr>
<tr>
<td>Course Title</td>
<td>Cost Management of Engineering Projects</td>
</tr>
<tr>
<td>Scheme and Credits</td>
<td>L</td>
</tr>
<tr>
<td></td>
<td>3</td>
</tr>
</tbody>
</table>

COURSE CONTENT:

Module-I:
Introduction and Overview of the Strategic Cost Management Process

Module-II:
Cost concepts in decision-making; Relevant cost, Differential cost, Incremental cost and Opportunity cost. Objectives of a Costing System; Inventory valuation; Creation of a Database for operational control; Provision of data for Decision-Making.

Module-III:
Project: meaning, Different types, why to manage, cost overruns centres, various stages of project execution: conception to commissioning. Project execution as conglomeration of technical and nontechnical activities. Detailed Engineering activities. Pre project execution main clearances and documents Project team: Role of each member. Importance Project site: Data required with significance. Project contracts. Types and contents. Project execution Project cost control. Bar charts and Network diagram. Project commissioning: mechanical and process.

Module-IV:
Cost Behaviour and Profit Planning Marginal Costing; Distinction between Marginal Costing and Absorption Costing; Break-even Analysis, Cost-Volume-Profit Analysis. Various decision-making problems. Standard Costing and Variance Analysis.

Module-V:

Module-VI:

References:
1. Cost Accounting A Managerial Emphasis, Prentice Hall of India, New Delhi
2. Charles T. Horngren and George Foster, Advanced Management Accounting
3. Robert S Kaplan Anthony A. Alkinson, Management & Cost Accounting
5. N.D. Vohra, Quantitative Techniques in Management, Tata McGraw Hill Book Co. Ltd.

<table>
<thead>
<tr>
<th>Course Code</th>
<th>OE-MBT301D</th>
</tr>
</thead>
<tbody>
<tr>
<td>Category</td>
<td>Open Electives</td>
</tr>
<tr>
<td>Course Title</td>
<td>Industrial Safety</td>
</tr>
<tr>
<td>Scheme and Credits</td>
<td>L</td>
</tr>
<tr>
<td></td>
<td>3</td>
</tr>
</tbody>
</table>

COURSE CONTENT:

MODULE-I:
Industrial safety: Accident, causes, types, results and control, mechanical and electrical hazards, types, causes and preventive steps/procedure, describe salient points of factories act 1948 for health and safety, wash rooms, drinking water layouts, light, cleanliness, fire, guarding, pressure vessels, etc, Safety colour codes. Fire prevention and fire fighting, equipment and methods.

MODULE-II:
Fundamentals of maintenance engineering: Definition and aim of maintenance engineering, Primary and secondary functions and responsibility of maintenance department, Types of maintenance, Types and applications of tools used for maintenance, Maintenance cost & its relation with replacement economy, Service life of equipment.

MODULE-III:

MODULE-IV:
Fault tracing: Fault tracing-concept and importance, decision tree concept, need and applications, sequence of fault finding activities, show as decision tree, draw decision tree for problems in machine tools, hydraulic, pneumatic, automotive, thermal and electrical equipment’s like, I. Any one machine tool, ii. Pump iii. Air compressor, iv. Internal combustion engine, v. Boiler, vi. Electrical motors, Types of faults in machine tools and their general causes.

MODULE-V:
Periodic and preventive maintenance: Periodic inspection-concept and need, degreasing, cleaning and repairing schemes, overhauling of mechanical components, overhauling of electrical motor, common troubles and remedies of electric motor, repair complexities and its use, definition, need, steps and advantages of preventive maintenance. Steps/procedure for periodic and preventive maintenance of: i. Machine tools, ii. Pumps, iii. Air compressors, iv. Diesel generating (DG) sets Program and schedule of preventive maintenance of mechanical and
electrical equipment, advantages of preventive maintenance. Repair cycle concept and importance.

References:

<table>
<thead>
<tr>
<th>Course Code</th>
<th>OE-MBT301E</th>
</tr>
</thead>
<tbody>
<tr>
<td>Category</td>
<td>Open Electives</td>
</tr>
<tr>
<td>Course Title</td>
<td>Composite Materials</td>
</tr>
<tr>
<td>Scheme and Credits</td>
<td></td>
</tr>
<tr>
<td></td>
<td>L</td>
</tr>
<tr>
<td></td>
<td>3</td>
</tr>
</tbody>
</table>

COURSE CONTENT:

MODULE-I:

MODULE-II:

MODULE-III:

MODULE-IV:

MODULE-V
Strength: Laminar Failure Criteria-strength ratio, maximum stress criteria, maximum strain criteria, interacting failure criteria, hygrothermal failure. Laminate first play failure-insight strength; Laminate strength-ply discount truncated maximum strain criterion; strength design using caplet plots; stress concentrations.
COURSE CONTENT:

MODULE-I:
Introduction to Energy from Waste: Classification of waste as fuel – Agro based, Forest residue, Industrial waste - MSW – Conversion devices – Incinerators, gasifiers, digestors

MODULE-II:
Biomass Pyrolysis: Pyrolysis – Types, slow fast – Manufacture of charcoal – Methods – Yields and application – Manufacture of pyrolytic oils and gases, yields and applications

MODULE-III:

MODULE-IV:
Biomass Combustion: Biomass stoves – Improved chullahs, types, some exotic designs, Fixed bed combustors, Types, inclined grate combustors, Fluidized bed combustors, Design, construction and operation - Operation of all the above biomass combustors.

MODULE-V:
Biogas: Properties of biogas (Calorific value and composition) - Biogas plant technology and status – Bioenergy system - Design and constructional features - Biomass resources and their classification – Biomass conversion processes - Thermo chemical conversion - Direct combustion - biomass gasification – pyrolysis and liquefaction - biochemical conversion - anaerobic digestion – Types of biogas Plants – Applications -Alcohol production from biomass - Bio diesel production - Urban waste to energy conversion –Biomass energy programme in India.

References:

SESSIONAL

<table>
<thead>
<tr>
<th>Subject Code</th>
<th>SE-MBT381</th>
<th>Category</th>
<th>Major Project</th>
</tr>
</thead>
<tbody>
<tr>
<td>Subject Name</td>
<td>Dissertation-I (Progress)</td>
<td>Semester</td>
<td>III</td>
</tr>
<tr>
<td>L-T-P</td>
<td>0-0-20</td>
<td>Credit: 10</td>
<td></td>
</tr>
</tbody>
</table>

A Project Dissertation would be of two-semester duration and one project would be allotted to one student. The Progress of project dissertation up to the end of the Third Semester would be evaluated by the concerned supervisor and a panel of examiners through a seminar presentation on the progress of dissertation followed by viva voce. The Progress of project dissertation up to the end of the Third Semester would be presented by the student concerned and viva voce will be conducted by a panel of examiners.

Quality of the project is measured in terms of
- Very clear and concise objectives
- Very clear methodology, articulated using technical terms indicating all steps and tools
- Cites substantial current and good quality literature
- Clarity in design/setting up of experiment.
- Benchmarks used / Assumptions made
- Interpretation of results and justification thereof and validity of the results presented.
- Overall presentation of the report

SESSIONAL

<table>
<thead>
<tr>
<th>Subject Code</th>
<th>SE-MBT481</th>
<th>Category</th>
<th>Major Project</th>
</tr>
</thead>
<tbody>
<tr>
<td>Subject Name</td>
<td>Dissertation-II (Completion)</td>
<td>Semester</td>
<td>IV</td>
</tr>
<tr>
<td>L-T-P</td>
<td>0-0-32</td>
<td>Credit: 16</td>
<td></td>
</tr>
</tbody>
</table>

Total output of the project work would have to be submitted in form of a bound thesis containing literature review, objective, details of work done, conclusion, reference, etc. The evaluation of the thesis will be done by a panel of examiners.
Final presentation and viva voce of the project will be based on the project thesis submitted to be conducted by a panel of examiners.

Quality of the project is measured in terms of
- Very clear and concise objectives
- Very clear methodology, articulated using technical terms indicating all steps and tools
- Cites substantial current and good quality literature
- Clarity in design/setting up of experiment.
- Benchmarks used / Assumptions made
☐ Interpretation of results and justification thereof and validity of the results presented.
☐ Overall presentation of the report.